If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7.94x^2+33.2x-3810=0
a = 7.94; b = 33.2; c = -3810;
Δ = b2-4ac
Δ = 33.22-4·7.94·(-3810)
Δ = 122107.84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33.2)-\sqrt{122107.84}}{2*7.94}=\frac{-33.2-\sqrt{122107.84}}{15.88} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33.2)+\sqrt{122107.84}}{2*7.94}=\frac{-33.2+\sqrt{122107.84}}{15.88} $
| 144+(10x+4)=180 | | 9p+11=p+3 | | (2x+7)=(3x+4) | | -6x+38=-6x-72 | | -15x-7=-22 | | 54+(2x+4)=90 | | -4(x-7)=8 | | -5(x+2=5 | | 3x-11-11=14 | | 120+2x=165 | | 146+(6x+4)=180 | | 2x+2=-10x+15 | | 81^x2=64 | | 2x+1+3x+10+.8x+10=180 | | 1+3x+6=10 | | x^2-15.35x-102.12=0 | | 5x+2/7x+23/7=-39 | | 7x+9+4x=93-x | | -3m+m=2 | | 5(1-8x)=205 | | 5r2−44r+120=−30+11r | | 5(x+1)-2=5(x-5 | | 8.50x+3=37 | | .17x^2-2.61x-17.36=0 | | 2x+(5x+39)=-23 | | 56x-49=9x | | 10-5k=4-8(2k-9) | | -5x-x=-6 | | 8+0.06x=16.52 | | -1.8x+4.2=-3 | | 500+25x=30x | | 15+0.19x=8.35 |